Investigation and application of electrospun nanofibers in tissue repair and engineering

Authors

  • Hamideh Barghamadi Department of Medical Engineering, South Tehran Branch, Islamic Azad University, 15847/43311, Tehran, Iran
  • Seyyed Hossein Sajjadifar Department of Medical Engineering, South Tehran Branch, Islamic Azad University, 15847/43311, Tehran, Iran.

DOI:

https://doi.org/10.5281/zenodo.16018758

Keywords:

electrospun, nanofibers, tissue engineering, bioelectrical, specific extracellular matrix, bioelectrical

Abstract

The ability of electrospun nanofibers to mimic the structure and composition of specific extracellular matrix(ECM) components has been widely utilized in constructing scaffolds for tissue regeneration. As a biophysical signal from the ECM, bioelectrical communication mediated by endogenous electric fields and currents also plays a crucial role in the repair and regeneration of damaged tissues. To achieve this objective, it is crucial to develop electroactive electrospun nanofibers for tissue engineering. Here, we briefly summarize the commonly developed electroactive electrospun nanofibers and their advances in tissue engineering, particularly for cardiac repair, nerve injury treatment, wound healing, and skeletal muscle and bone regeneration. We also discuss their potential applications as biosensors and drug delivery platforms. We then specifically focus on future directions in the design and functionalization of electroactive electrospun nanofibers for tissue engineering. Finally, we suggest some promising strategies to make the framework smarter, more portable, easier to monitor, and safer.

References

Tahmasebifar, A., Kayhan, S. M., Evis, Z., Tezcaner, A., Çinici, H., & Koç, M. (2016). Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial. Journal of Alloys and Compounds, 687, 906-919.

B.D. Ratner and B.S. An, “Biomaterials Science: An Introduction to Materials in Medicine,” vol. 26, p. 5093, 2005.

Wu S., Liu X., Yeung K.W.K., Guo H., Li P., Hu T., Chung C.Y., Chu P.K. Surf. Coat. Technol., 233 (2013), pp. 13-26

A. Biesiekierski, “A New Look at Biomedical Ti-based Shape Memory Alloys,” no. January 2012, 2012.

Chen Y., Xu Z., C. Smith, J. Sankar Acta Biomater., 10 (11) (2014), pp. 4561-4573.

S.V. Dorozhkin Acta Biomater., 10 (7) (2014), pp. 2919-2934.

N.E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, A. Lewenstam Clin. Chim. Acta, 294 (1–2) (2000), pp. 1-26.

A. Biesiekierski, Wang J., M. Abdel-Hady Gepreel, Wen C. Acta Biomater., 8 (5) (2012), pp. 1661-1669.

Li J., Tan L., Wan P., Yu X., Yang K. Mater. Sci. Eng. C, 49 (June) (2015), pp. 422-429.

Zheng Y.F., Gu X.N., F. Witte Mater. Sci. Eng. R Rep., 77 (2014), pp. 1-34.

Cheng J., Liu B., Wu Y.H., Zheng Y.F. J. Mater. Sci. Technol., 29 (7) (2013), pp. 619-627.

J. Lévesque, H. Hermawan, D. Dubé, D. Mantovani Acta Biomater., 4 (2) (2008), pp. 284-295.

M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. von Schnakenburg Biomaterials, 27 (28) (2006), pp. 4955-4962.

J.M. Seitz, A. Lucas, M. Kirschner JOM, 68 (4) (2016), pp. 1177-1182.

H. Ibrahim, S.N. Esfahani, B. Poorganji, D. Dean, M. Elahinia Mater. Sci. Eng. C, 70 (2016), pp. 870-888.

Li N., Zheng Y. J. Mater. Sci. Technol., 29 (6) (2013), pp. 489-502.

W. Schmidt, P. Behrens, C. Brandt-Wunderlich, S. Siewert, N. Grabow, K.P. Schmitz Cardiovasc. Revascularization Med., 17 (6) (2016), pp. 375-383.

H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, H. Waizy. Biomed. Eng. Online, 12 (1) (2013), p. 62.

Xie G., H. Takada, H. Kanetaka Mater. Sci. Eng. A, 671 (2016), pp. 48-53.

A.K. Chaubey, S. Scudino, M. Samadi Khoshkhoo, K.G. Prashanth, N.K. Mukhopadhyay, B.K. Mishra, J. Eckert J. Alloys Compd., 610 (2014), pp. 456-461.

Xiong G., Nie Y., Ji D., Li J., Li C., Li W., Zhu Y., Luo H., Wan Y. Curr. Appl. Phys., 16 (8) (2016), pp. 830-836.

Feng J., Sun H., Li X., Zhang J., Fang W., Fang W. Adv. Powder Technol., 27 (2) (2015), pp. 550-556.

M. Rashad, Pan F., Guo W., Lin H., M. Asif, M. Irfan Mater. Charact., 106 (2015), pp. 382-389.

Yang D., Hu Z., Chen W., Lu J., Chen J., Wang H., Wang L., Jiang J., Ma A. J. Manuf. Process., 22 (2016), pp. 290-296.

Kang M.H., Do Jung H., Kim S.W., Lee S.M., Kim H.E., Y. Estrin, Y.H. Koh Mater. Lett., 108 (2013), pp. 122-124.

H. Asgharzadeh, Yoon E.Y., Chae H.J., Kim T.S., Lee J.W., Kim H.S. J. Alloys Compd., 586 (SUPPL. 1) (2014), pp. S95-S100.

Zhou Y.L., Li Y., Luo D.M., Ding Y., P. Hodgson Mater. Sci. Eng. C, 49 (2015), pp. 93-100.

Li X., Liu X., Wu S., Yeung K.W.K., Zheng Y., Chu P.K. Acta Biomater., 45 (2016), pp. 2-30.

Bi Y., Zheng Y., Li Y. Mater. Lett., 161 (2015), pp. 583-586.

Z.S. Seyedraoufi, S. Mirdamadi J. Mech. Behav. Biomed. Mater., 21 (2013), pp. 1-8.

M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi Mater. Sci. Eng. C (71) (2016), pp. 1253-1266.

R. del Campo, B. Savoini, A. Muñoz, M.A. Monge, G. Garcés J. Mech. Behav. Biomed. Mater., 39 (2014), pp. 238-246.

S. Cabeza, G. Garcés, P. Pérez, P. Adeva J. Mech. Behav. Biomed. Mater., 46 (2015), pp. 115-126.

S.Z. Khalajabadi, M.R. Abdul Kadir, S. Izman, M. Marvibaigi J. Alloys Compd., 655 (2016), pp. 266-280.

A. Tahmasebifar, S.M. Kayhan, Z. Evis, A. Tezcaner, H. Çinici, M. Koç J. Alloys Compd., 687 (2016), pp. 906-919.

S.M. Kayhan, A. Tahmasebifar, M. Koc, Y. Usta, A. Tezcaner, Z. Evis Mater. Des., 93 (2016), pp. 397-408.

Xia X.C., Chen X.W., Zhang Z., Chen X., Zhao W.M., Liao B., Hur B. J. Magnes. Alloy., 1 (4) (2013), pp. 330-335.

M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi Mater. Sci. Eng. C, 49 (2015), pp. 436-444.

M. Wolff, J.G. Schaper, M.R. Suckert, M. Dahms, T. Ebel, R. Willumeit-Römer, T. Klassen JOM, 68 (4) (2016), pp. 1191-1197.

B. Ratna Sunil, C. Ganapathy, T.S. Sampath Kumar, U. Chakkingal J. Mech. Behav. Biomed. Mater., 40 (2014), pp. 178-189.

Zhang J., Kang Z., Wang F. Mater. Sci. Eng. C, 68 (2016), pp. 194-197.

R. Viswanathan, N. Rameshbabu, S. Kennedy, D. Sreekanth, K. Venkateswarlu, M. Sandhya Rani, V. Muthupandi Mater. Sci. Forum, 765 (Jul. 2013), pp. 827-831.

Kang M.-H., Jang T.-S., Kim S.W., Park H.-S., Song J., Kim H.-E., Jung K.-H., Jung H.-D.

Mater. Sci. Eng. C, 62 (2016), pp. 634-642.

Cheng W., Ma S., Bai Y., Cui Z., Wang H. J. Alloys Compd., 731 (2017), pp. 945-954.

Y. Lu, A.R. Bradshaw, Y.L. Chiu, and I.P. Jones, “Effects of secondary Phase and Grain Size on the Corrosion of Biodegradable Mg–Zn–Ca alloys,” vol. 48, pp. 480–486, 2015.

J.J. Ramsden, D.M. Allen, D.J. Stephenson, J.R. Alcock, G.N. Peggs, G. Fuller, G. Goch

CIRP Ann. – Manuf. Technol., 56 (2) (2007), pp. 687-711.

Zhang X., Yuan G., Niu J., Fu P., Ding W. J. Mech. Behav. Biomed. Mater., 67 (2012), pp. 74-86.

Zhang X., Yuan G., Mao L., Niu J., Fu P., Ding W. J. Mech. Behav. Biomed. Mater., 7 (2012), pp. 77-86

Zhao C., Pan F., Zhang L., Pan H., Song K., Tang A. Mater. Sci. Eng. C, 70 (2017), pp. 1081-1088.

A. Gil-Santos, I. Marco, N. Moelans, N. Hort, O. Van der Biest Mater. Sci. Eng. C, 71 (2017), pp. 25-34.

Ai Y., Luo C., Liu J., Huang Y. Jinshu Xuebao/Acta Metall. Sin., 41 (1) (2005), pp. 49-54.

A. Gil-Santos, G. Szakacs, N. Moelans, N. Hort, O. Van der Biest J. Alloys Compd., 694 (2017), pp. 767-776.

Chen Y., Gao J., Song Y., Wang Y. Mater. Sci. Eng. A, 671 (2016), pp. 127-134.

Zhang Y., Huang X., Ma Z., Li Y., Guo F., Yang J., Ma Y., Hao Y. Mater. Sci. Eng. A, 686 (2017), pp. 93-101.

S. Bauer, P. Schmuki, K. von der Mark, Park J. Prog. Mater. Sci., 58 (3) (2013), pp. 261-326.

Y. Shibata, Y. Tanimoto J. Prosthodont. Res., 59 (1) (2015), pp. 20-33.

D. Deligianni Biomaterials, 22 (11) (2001), pp. 1241-1251.

A.F. van Tol, J.E. Tibballs, N. Roar Gjerdet, P. Ellison J. Mech. Behav. Biomed. Mater., 28 (2013), pp. 254-262.

T. Scheerlinck, P.-P. Casteleyn J. Bone Joint Surg. Br., 88–B (11) (2006), pp. 1409-1418.

H.J. Rønold, S.P. Lyngstadaas, J.E. Ellingsen Biomaterials, 24 (25) (2003), pp. 4559-4564.

Downloads

Published

2025-07-15

How to Cite

Barghamadi, H., & Sajjadifar, S. H. (2025). Investigation and application of electrospun nanofibers in tissue repair and engineering. MEDICO&ENGINEERING FUTURE, 2(1), 30–36. https://doi.org/10.5281/zenodo.16018758

Issue

Section

Orginal Articles

Categories